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1. Relative Positional Accuracy

“Relative Positional Accuracy (RPA) is the value expressed 
in feet or meters that represents the uncertainty due 
to random errors in measurements in the location of 
any point on a survey to any other point on the same 
survey, at the 95 percent confidence level.” Rule 12, 
865 IAC, 1-12-2.

The ALTA (American Land Title Association) test is based 
on the relative error ellipse and the horizontal 
distance between each station pair. The relative 
error ellipse represents the relative precision of each 
station pair. This test was jointly developed by ALTA 
and the American Congress on Surveying and 
Mapping (ACSM).

RPA may be tested by:

1. Comparing the relative location of points in a survey 
as measured by an independent survey of higher 
accuracy.

2. Testing the results from a minimally-constrained, 
correctly weighted, least squares adjustment of the 
survey.
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1. Relative Positional Accuracy

WHY Least Squares

1. Distributes the error following laws of random 
probability.

2. Only way to handle complex networks.

3. Minimizes the sum of squared residuals.

4. The best any other method can do is to equal the 
results of a least squares adjustment.

REQUIREMENTS for valid results

1. Instruments properly tuned.

2. Proper field procedures used.

3. Blunders and systematic errors removed or minimized.

4. Remaining inaccuracy is due to random errors. 

PROCEDURE

1. Minimally-constrained adjustment tied to one station + a 
direction (azimuth, bearing or a vector).

2. Proper weighting employed by assigning expected 
errors (standard deviations) to observations.



1/18/2009 (C) 2009 Best-Fit Computing, Inc. 5

2. The Mathematical Test

1. Determine the relative (not absolute) error ellipse 

between all station pairs in the survey. Each ellipse 

has a semi-major and semi-minor axis; use the semi-

major axis (the larger of the two).

2. A four-station network results in six relative error 

ellipses.

A 10-station network has 45 relative error ellipses.

A 50-station network has 1225 relative error ellipses.

Number of relative error ellipses is:

n x (n – 1) / 2

where n = number of stations.



1/18/2009 (C) 2009 Best-Fit Computing, Inc. 6

2. The Mathematical Test

A: Absolute error ellipse (not used for ALTA).

R: Relative error ellipse between each station pair.

1 2 3 4

1 A

2 R A

3 R R A

4 R R R A

Matrix showing combinations for station 1, 2, 3, 4
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2. The Mathematical Test

3. Scale the semi-major ellipse to the 95% confidence 
level using the K value of 2.448.

4. Compute the total allowable uncertainty for each 
station pair using the fixed tolerance and the variable 
PPM (Parts Per Million).

Total Tolerance Allowed

0.07 feet + 50 PPM

The PPM contribution increases with increasing   
horizontal distance between any two station pairs.

5. The ratio of the scaled relative error ellipse to the 
Total Tolerance Allowed must be <= 1.0.
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2. The Mathematical Test

This is a graphical representation of the error ellipse. The  

semi-major („a‟) and semi-minor („b‟) axes are 

computed. The ellipse is then rotated clockwise from 

the north to the direction given by the azimuth (θ).
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2. The Mathematical Test

EXAMPLE 1: Between Stations 1 and 2

Relative standard error ellipse

0.035 feet (semi-major axis)

Scaled to 95% confidence level (K = 2.448)

0.035 x 2.448 = 0.086 feet 

Horizontal distance between 1 and 2

250.0 feet

Fixed allowable error

0.07 feet

Variable allowable error (50 ppm)

50 x 250 feet / 1000000 = 0.0125

Total allowable error

0.07 + 0.0125 = 0.0825

Scaled error ellipse / total allowable error

0.086 / 0.0825 = 1.042 (1.042 > 1.0, Test Fails)
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2. The Mathematical Test

EXAMPLE 2: Between Stations 3 and 4

Relative standard error ellipse

0.037 feet (semi-major axis)

Scaled to 95% confidence level (K = 2.448)

0.037 x 2.448 = 0.091 feet

Horizontal distance between 3 and 4

1000.0 feet

Fixed allowable error

0.07 feet

Variable allowable error (50 ppm)

50 x 1000 feet / 1000000 = 0.050

Total allowable error

0.07 + 0.050 = 0.120

Scaled error ellipse / total allowable error

0.091 / 0.120 = 0.758 (0.758 < 1.0, Test Passes)
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3. Statistical Review

STATISTICS

A way to convert numbers into useful information so that 
good decisions can be made.

We use statistics to develop confidence in a survey. We 
can also use statistics to find problems with a survey.

DESCRIPTIVE Statistics

• Baseball batting averages.

• Basketball average points scored per game.

• Measuring a distance 10 times to determine the mean 
and dispersion.

INFERENTIAL Statistics

• Make claims or conclusions about population based on 
a sample of data from that population.

• Population represents all possible outcomes.

• Sample is a subset of a population.

• Inferential statistic requires mathematical models that 
involve probability theory.

• You have to make these decisions.
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3. Statistical Review

DESCRIPTIVE Statistics

A height difference between Stations 1 and 2, measured 
15 times. Weight is the same for all measurements.

Num Value Weight Value * Weight

1 9.98 1.0 9.98

2 9.99 1.0 9.99

3 10.01 1.0 10.01

4 10.01 1.0 10.01

5 10.01 1.0 10.01

6 10.01 1.0 10.01

7 10.02 1.0 10.02

8 10.02 1.0 10.02

9 10.02 1.0 10.02

10 10.02 1.0 10.02

11 10.02 1.0 10.02

12 10.03 1.0 10.03

13 10.03 1.0 10.03

14 10.04 1.0 10.04

15 10.05 1.0 10.05
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3. Statistical Review

Same data, but tabulated by frequency of occurrence. 
Weight is the same for all measurements.

Frequency Value Freq * Value Weight Freq * Val * Wgt

1 9.98 9.98 1.0 9.98

1 9.99 9.99 1.0 9.99

4 10.01 40.04 1.0 40.04

5 10.02 50.10 1.0 50.10

2 10.03 20.06 1.0 20.06

1 10.04 10.04 1.0 10.04

1 10.05 10.05 1.0 10.05

15 15.0 150.26

Mean 150.26 / 15.0

Mean 10.0175
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3. Statistical Review

Graphical representation of the height difference data. 

Notice how it tends to form a bell-shaped curve 

centered around the mean of 10.0175.
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3. Statistical Review

Same data shown in relative frequency form. The area 

under this curve is 1.0 (100% of probability). Notice that 

10.02 occurs 33.3% of the time. The curve follows the 

pattern of the normal probability distribution.
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3. Statistical Review

CALCULATING Descriptive Statistics

Measures of Central Tendency (center point of data set):

Mean - Arithmetic mean

Median - Mid Point Value (half below, half above)

Mode - Most common value

Xi - i‟th observation value

Wi - i‟th observation weight (all 1.0 in this example)

Mean - (summation all Xi * Wi) / (summation all Wi)

- 150.26 / 15.0

- 10.017

Median - 10.02

Mode - 10.02

The Mean is the least squares solution. In this example, 

10.017 results in the minimization of the sum of 

squared weighted residuals, where the weight for each 

observation is 1.0.
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3. Statistical Review

Obs Xi Wi Xi * Wi Mean Residual (Residual)2

1 9.98 1.0 9.98 10.017 0.037 0.001369

2 9.99 1.0 9.99 10.017 0.027 0.000729

3 10.01 1.0 10.01 10.017 0.007 0.000049

4 10.01 1.0 10.01 10.017 0.007 0.000049

5 10.01 1.0 10.01 10.017 0.007 0.000049

6 10.01 1.0 10.01 10.017 0.007 0.000049

7 10.02 1.0 10.02 10.017 -0.003 0.000009

8 10.02 1.0 10.02 10.017 -0.003 0.000009

9 10.02 1.0 10.02 10.017 -0.003 0.000009

10 10.02 1.0 10.02 10.017 -0.003 0.000009

11 10.02 1.0 10.02 10.017 -0.003 0.000009

12 10.03 1.0 10.03 10.017 -0.013 0.000169

13 10.03 1.0 10.03 10.017 -0.013 0.000169

14 10.04 1.0 10.04 10.017 -0.023 0.000529

15 10.05 1.0 10.05 10.017 -0.033 0.001089

Total 150.26 15.0 150.26 ~0.0 ~0.004295
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3. Statistical Review

Variance and Standard Deviation for the set of 

observations:

s2 = sample variance = 0.004295 / (n – 1)

s2 = sample variance = 0.004295 / (14)

s2 = sample variance = 0.000307

s = sample standard deviation = sqrt(s2)

s = sample standard deviation = sqrt(0.000307)

s = sample standard deviation = 0.0175

(n – 1) is the redundancy in this set of sample 

measurements.
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3. Statistical Review

THE EMPIRICAL RULE

If a one-dimensional distribution follows a bell-shaped 

curve – symmetrical curve centered around the mean –

we would expect approximately 68, 95 and 99.7 

percent of the values to fall within one, two and three 

standard deviations around the mean, respectively 

(actual values are 1.0, 1.96 and 2.97, respectively).

Therefore: mean = 10.017, s = 0.0175

10.017 – (1.0 x 0.0175) <= 68% <= 10.017 + (1.0 x 0.0175)

9.999 <= 68% <= 10.035

10.017 – (2.0 x 0.0175) <= 95% <= 10.017 + (2.0 x 0.0175)

9.982 <= 95% <= 10.052

10.017 – (3.0 x 0.0175) <= 99.7% <= 10.017 + (3.0 x 0.0175)

9.965 <= 99.7% <= 10.070

The error ellipse is two-dimensional. The K value is 2.448 

for the 95% confidence level.
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3. Statistical Review

Here is the distribution curve that goes with this data. The 
area under the curve approaches 1.0. The left and right 
ends never touch the X axis. The curve follows the 
pattern of the normal probability distribution. The 
smaller the standard deviation, the narrower the curve.
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3. Statistical Review

The mean of all sample observations is the best-fit, least 
squares solution.

STANDARD deviation of the mean

s mean = s / sqrt(num observations)

s mean = 0.0175 / sqrt(15.0)

s mean = 0.004518

VARIANCE of the mean

s2 mean = s mean * s mean

s2 mean = ~0.000020417

This is what you would expect if you measured the same 
height difference 15 times, each day, for 10 or 20 days. 
The mean of each day‟s work would follow a normal 
distribution. The standard deviation and variance of 
these means would be much smaller than that for an 
individual set of observations.

If we load this data into an adjustment, we will see this 
result for the adjusted height standard deviation 
(LevelNet.txt).
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3. Statistical Review

ABSOLUTE Error Ellipse

The absolute standard error ellipse is a representation of a 
probability. We really do not know in absolute terms 
where the point we measured really is; we only have 
a probability of where the point is. 

A standard error ellipse (un-scaled) represents a 60.6% 
chance that the actual point is outside the computed 
position and the area bounded by the standard error 
ellipse. To ensure a smaller probability that the point 
is outside this region, the size of the standard error 
ellipse must be increased. 

By expanding the standard error ellipse by the K value of 
2.448, we create a 5% probability that the point may 
fall outside the computed position and the area 
bounded by the standard error ellipse. Put another 
way, the point has a 95% probability of falling within 
this region, the standard error ellipse is scaled by 
2.448.



1/18/2009 (C) 2009 Best-Fit Computing, Inc. 23

3. Statistical Review

RELATIVE Error Ellipse

The standard relative error ellipse is a representation of the 
relative precision of each station pair coordinate 
difference. This ellipse is created by differencing the 
coordinate errors for each station pair. Errors 
common to both stations are eliminated. 

The standard relative error ellipse can be smaller than the 
absolute (station) error ellipse on each end. The 
coordinates for each station could be completely 
wrong (e.g., based on incorrectly used fixed 
coordinates), but the relative errors between stations 
give the best estimate of the precision of the survey 
– regardless of the coordinates.

Think in terms of GPS measurements. The station 
coordinates determined using GPS may be off by 
meters, but the vector (the difference between these 
coordinates) can be accurate to the centimeter level 
or better. The error in this vector is the best indicator 
as to the quality of the measurement.

To scale the standard relative error ellipse to the 95% 
confidence level, use a K value of 2.448.
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3. Statistical Review

TYPE I Error

In the previous discussion, we implied that we have a 5% 
probability that the actual point falls outside the 
computed coordinate value and the bounding error 
ellipse. There is a 95% chance that the value falls 
inside this region. 

Ho is the Null Hypothesis (the hypothesis that the true 
position of the coordinate falls within the computed 
coordinate value and the bounding error ellipse). 

A Type I error is committed when Ho is rejected based on a 
statistical test of sample data when, in fact, Ho is 
true.  The probability of committing this type of error 
is 5% (or alpha), when the confidence level is set to 
95%.

Suppose the computer-generated statistics tell us to reject 
Ho. We would reject the result, even though it is 
correct. Fortunately, this only has a 5% chance of 
occurring. If we reject Ho when it was really true, we 
may need additional field work to confirm that the 
original data, is in fact, acceptable data.
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3. Statistical Review

TYPE II Error

A Type II error is committed when Ho hypothesis is not 
rejected when, in fact, it is false.

The probability of committing this type of error is difficult to 
compute, since we will never know what the true 
coordinate value is.

Ho Is True Ho Is False

Reject Ho Type I Error Correct Outcome

Do Not Reject Ho Correct Outcome Type II Error
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4. Computing The Error Ellipse

This is a graphical representation of the error ellipse. The  

semi-major („a‟) and semi-minor („b‟) axes are 

computed. The ellipse is then rotated clockwise from 

the north to the direction given by the azimuth (θ).
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4. Computing The Error Ellipse

After a network adjustment, the matrix containing statistical 

results is generated. For a 2D network, each station 

has two columns and two rows. For a 3D network, there 

are three columns and three rows for each station; 

however, the third row/column (the height row/column) 

is not used to compute the error ellipse.

1 2 3 4

1 s2
N       sNE

sNE       s
2

E

2 sN1N2 sE1N2

sN1E2 sE1E2

s2
N       sNE

sNE     s
2

E

3 sN1N3 sE1N3

sN1E3 sE1E3

sN2N3 sE2N3

sN2E3 sE2E3

s2
N       sNE

sNE     s
2

E

4 sN1N4 sE1N4

sN1E4 sE1E4

sN2N4 sE2N4

sN2E4 sE2E4

sN3N4 sE3N4

sN3E4 sE3E4

s2
N       sNE

sNE     s
2

E
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4. Computing The Error Ellipse

To compute the absolute error ellipse, we need data from 
the station 2x2 matrix.

Formulas for the absolute error ellipse

t1 = (s2
N + s2

E) 

t2 = (s2
E - s2

N)

t3 = sNE

t4 = (s2
N - s2

E) 

a, b, az require decorrelation of the the 2x2 matrix.

a = [1/2 t1 + (1/4 t2
2 + t3

2)1/2  ]1/2

b = [1/2 t1 - (1/4 t2
2 + t3

2)1/2  ]1/2

angle = atan2(2 t3 , t4)

az = convert_to_az(angle) / 2

a = semi-major axis of ellipse

b = semi-minor axis of ellipse

az = azimuth of orientation

Note: All inverse entries are multiplied by the “a 
posteriori variance factor” before use in any 
calculation. 
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4. Computing The Error Ellipse

To compute the relative error ellipse, we need data from 
each station 2x2 matrix, plus data that describes 
additional coordinate error differences of the station 
pair.

Formulas for the relative error ellipse

s2
DN = s2

N1 – 2sN1N2 + s2
N2

s2
DE = s2

E1 – 2sE1E2 + s2
E2

sDNDE = sN1E1 – sN1E2 - sE1N2 + sN2E2

Identical to absolute error ellipse equations

t1 = (s2
DN + s2

DE) 

t2 = (s2
DE - s2

DN)

t3 = sDNDE

t4 = (s2
DN - s2

DE) 

Equations for a, b, az (same as for absolute error ellipse)

a = [1/2 t1 + (1/4 t2
2 + t3

2)1/2  ]1/2

b = [1/2 t1 - (1/4 t2
2 + t3

2)1/2  ]1/2

angle = atan2(2 t3 , t4)

az = convert_to_az(angle) / 2
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4. Computing The Error Ellipse

double atan2(double y, double x)

{

if (x == 0.0)

{

if ( y == 0.0 )

return 0.0; // x = y = 0.0

else

return sign(y) * Piidiv2;

}

else

{

if (x > 0.0) // First or Fourth quad 

return atan(y / x);

else // Second or Third quad

return sign(y)*(Pii-atan(fabs(y/x)));

}

}

double convert_to_az(double ang)

{

if (ang < 0.0)

ang + Piitim2;

else if (ang > Piitim2)

return ang - Piitim2;

else

return ang;

}
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5. Sample Network Projects

One of the properties of random error is that it propagates 

as you move further from the known position.  Although 

absolute error ellipses increase (left to right), the 

relative error ellipses do not increase much. The 

relative error ellipses reflect the error between the 

station pair; the common errors cancel each other out 

and are therefore eliminated.
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5. Sample Network Projects

For small projects, conventional measurements are often 

preferred due to their higher accuracy over short 

distances. This project covers an area of 250‟ by 250‟:
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5. Sample Network Projects

Here is the same network using GPS. Notice that some of 

the ALTA tests fail. This is usually the result of larger 

minimum error of GPS. Since distances are short, 

allowable tolerance is small. This project covers an 

area of 250‟ by 250‟:
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5. Sample Network Projects

This network has the same expected errors as the 

previous GPS network; however, the distances are 

longer and so are the allowable errors. These pass 

ALTA. This project covers an area of 5000‟ by 5000‟:
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5. Sample Network Projects

This project contains only distances. Notice the direction of 

the uncertainty as shown by the shape and orientation 

of the error ellipses. Poor network geometry results in 

several failed tests.
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5. Sample Network Projects

Same network, but only angular measurements. Notice the 

direction of the error ellipses. Again, poor network 

geometry results in uncertainty and failed ALTA tests.
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5. Sample Network Projects

Same shape as previous two projects, but now we have 

included all the distances and angles from these two 

projects. Even with same network geometry, all tests 

pass ALTA. 
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6. Network Design

Network design allows you to determine, in advance, if 

your survey will meet ALTA requirements. For 

network design, you need the following:

1. Approximate coordinates of surveyed locations.

2. The type of observations used between each station 

pair.

3. The expected error in your measurements (as 

expressed by the standard deviation of each 

observation).

If your design is adequate and you meet or exceed the 

expected error (in the field), the survey should pass 

ALTA testing.

SAMPLE Project

Stations: AAA, BBB, CCC, DDD.

Hor Ang, Zen Ang, Slope Dist between each station. 

SD‟s are 4.0, 7.0 sec and 0.01‟ respectively

Az from AAA to CCC for orientation (SD=1.0 sec).

Slope Dist from CCC to AAA (SD=0.01‟).
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6. Network Design
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7. Tips For Success

1. Equipment and crew must be well-functioning.

2. Utilize good network geometry: equilateral triangles 
for terrestrial observations and sky geometry for 
satellites.

3. Check field data daily, if possible. This makes it 
much easier to find blunders.

4. Use realistic standard deviations.

5. Eliminate systematic errors and blunders; use 
statistical tests to help identify outliers.

6. For large scale projects, use ellipsoidal height when 
adjusting in 3D. Using elevation can introduce a one
PPM error for every six meters in height difference 
between the elevation value and the ellipsoidal 
height value.

7. Utilize Network Design as often as possible.


